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It is well known that when a high subsonic (Mach number > 0.7) high Reynolds 
number (Re > 2 x lo5) jet is directed normal to a wall intense discrete frequency 
sound waves called impingement tones are emitted. This phenomenon has been 
studied by a number of investigators in the past. It is generally accepted that the 
tones are generated by a feedback loop. Despite this general agreement critical 
difference in opinion as to how the feedback is achieved remains unresolved. Early 
investigators (e.g. Wagner 1971 ; Neuwerth 1973, 1974) proposed that the feedback 
loop is closed by acoustic disturbances which propagate from the wall to the nozzle 
exit inside the jet. Recent investigators (e.g. Ho & Nosseir 1981 ; Umeda et al. 1987), 
However, believed that the feedback is achieved by sound waves propagating outside 
the jet. In  this paper a new feedback mechanism is proposed. It is suggested that the 
feedback is achieved by upstream-propagating waves associated with the lowest- 
order intrinsic neutral wave modes of the jet flow. These wave modes have well- 
defined radial and azimuthal pressure and velocity distributions. These distributions 
are dictated by the mean flow of the jet exactly as in the case of the well-known 
Kelvin-Helmholtz instability waves. The characteristics of these waves are 
calculated and studied. These characteristics provide a natural explanation of why 
the unsteady flow fields of subsonic impinging jets must be axisymmetric, whereas 
those for supersonic jets may be either axisymmetric or helical (flapping). In addition 
they also offer, for the first time, an explanation as to why no stable impingement 
tones have been observed for (cold) subsonic jets with Mach number less than 0.6. 
Furthermore, the new model allows the prediction of the average Strouhal number 
of impingement tones as a function of jet Mach number. The predicted results 
compare very favourably with measurements. For subsonic jets the pressure and 
velocity field of these upstream-propagating neutral waves are found to be confined 
primarily inside the jet. This is in agreement with the observations of Wagner (1971) 
and Neuwerth (1973, 1974) and their contention that the feedback disturbances 
actually propagate upstream inside the jet. 

1. Introduction 
It was recognized by early investigators e.g. Wagner (1971) and Neuwerth (1973, 

1974) that very strong discrete tones were generated when a high subsonic (Mach 
number > 0.7) or supersonic jet was directed normal on a wall a t  a distance of several 
jet diameter away. By varying the distance between the wall and the nozzle exit it 
was observed that the tone frequency exhibited a staging phenomenon suggesting 
that the tones were generated by a feedback loop. The feedback loop derives its 
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FIauRE 1 .  Schematic diagram of a subsonic impinging jet and possible feedback paths. 

energy from the large-scale instability waves in the mixing layer of the jet. These 
waves are generated near the nozzle lip. They propagate downstream in the mixing 
layer of the jet as shown in figure 1. Upon impinging on the wall strong acoustic 
waves are produced. The acoustic waves propagate upstream to the nozzle exit 
region of the jet where they excite the shear layer. This excitation causes further 
generation of instability waves and thus completes the feedback cycle. In  his 
pioneering work on subsonic impinging jets Wagner (1971) carried out extensive 
schlieren study of the flow field inside and outside the jet. He reported the 
observation of a standing wave pattern inside the jet which he proposed was formed 
by the superposition of the pressure fields of the downstream-propagating instability 
wave and the upstream-propagating feedback acoustic waves. Neuwerth (1973) 
improved the experimental facility of Wagner. By observing the feedback 
phenomenon using high-speed movies he was able to identify clearly the upstream 
feedback waves inside the jet column. Recently Ho & Nosseir (1981) and Umeda, 
Maeda & Ishii (1987) performed detailed investigations of the same feedback cycle 
associated with the impingement tones a t  high subsonic Mach numbers. Based on 
their extensive correlation measurements they concluded, in total disagreement with 
Wagner and Neuwerth, that the feedback acoustic waves actually propagated and 
closed the loop outside the jet column. The disagreement is extremely serious and 
irreconcilable. It calls for a fundamental re-examination of how the acoustic 
feedback is really accomplished. 

Since the start of the present investigation a careful study of all available schlieren 
and shadowgraphic pictures of resonant impinging jets including those obtained by 
Wagner, Neuwerth, Umeda et al. and the present data (see figure 2) was carried out. 
The study reveals that for subsonic jets the instability waves and the flow field 
associated with the feedback loop invariably possess axial symmetry. It is well 
known that round jets can undergo axisymmetric as well as helical and flapping 
mode instability (higher-order modes are not often observed). Neuwerth (1981) 
observed axisymmetric coherent structures (instability waves) in a free jet a t  a 
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FIGURE 2. Subsonic impinging jet at Mach number 0.8 showing axisymmetric large-scale 
instability waves in the jet column. (a) LID = 2.0, (b )  L fD = 4.0. 
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FIGURE 3. Supercronic impinging jet at Mach number 1.4 showing axisymmetric feedback 
resonance. LID = 6.0. 

Reynolds number of lo6, and Mach number of 0.5 but a helical mode appeared when 
the Mach number was increased beyond 0.8. However, when the impingement plate 
was inserted only the axisymmetric instability mode remained. Nosseir & Ho (1982) 
measured the azimuthal pressure cross-correlation around resonant impinging jets at 
Mach numbers > 0.7. The correlation at different azimuthal angles was sinusoidal 
with respect to the time delay 7. The correlation function has a maximum at r = 0 
indicating that the impinging coherent structures (instability waves) and the 
feedback acoustic waves are predominantly axisymmetric. Based on all the above 
data it appears that only the axisymmetric instability and acoustic wave modes are 
allowed in subsonic resonant impinging jets. This is in sharp contrast to supersonic 
impinging jets. Earlier, Neuwerth (1974) had observed both axisymmetric and 
helical (or flapping) resonance modes in these jets. These observations at supersonic 
Mach numbers are confirmed by the present experiments (see figures 3 and 4). As yet 
there seems to be no theoretical explanation of this Mach number influence on the 
helical or flapping resonance mode, namely, that they are not observed in subsonic 
impinging jets. A practical implication of this phenomenon is that twin subsonic 
impinging jets are less likely to undergo coupled synchronized oscillations, the reason 
being that twin jet resonance requires the jets to perform coordinated flapping 
oscillations (see Seiner, Manning & Ponton 1986, 1987 ; Norum & Shearin 1986). The 
flapping motion is equivalent to a superposition of equal amount of left-hand and 
right-hand helical mode oscillations. Since flapping is not allowed for single subsonic 



Discrete tone generation by impinging jets 71 

z 
Wall 

FIGURE 4. Supersonic impinging jet at Mach number 1.4 showing helical feedback resonance. 
LID = 10.0. 

impinging jets, it is, therefore, less probable that they will interact with each other 
to produce twin impinging jet resonance. 

Another puzzling observation of the impingement tone phenomenon is the 
existence of a low Mach number cut-off for stable tones. It was first observed by 
Wagner (1971) that  as the Mach number of the jet decreases below 0.7 stable 
impingement tones are difficult to maintain. At still lower Mach numbers, say below 
0.6, no stable tones could be detected. This cut-off phenomenon was also observed 
and reported by Neuwerth (1974) and Ho & Nosseir (1981). So far no theoretical 
explanation of this Mach number effect has been offered in the literature. 



72 C. K .  W.  Tam and K .  K.  Ahuja 

The main objective of the present work is to develop a new analytical model and 
better understanding of the feedback loop. This model is capable of clarifying: 

(a)  whether the feedback acoustic waves propagate inside or outside a subsonic 
impinging jet in closing the self-excited resonance loop ; 

( b )  why the feedback resonance in subsonic impinging jets must be associated with 
the axisymmetric mode alone whereas both helical (flapping) and axisymmetric 
modes are possible in supersonic jets; 

( c )  why there is a low Mach number cut-off for the existence of impingement tones. 
The present effort, both theoretical and experimental, concentrates primarily on 

the feedback phenomenon. Its  relationship to noise generation, both discrete and 
broadband, will not be dealt with in this paper. 

2. Characteristics of feedback acoustic wave modes 
As pointed out above, previous investigators, e.g. Wagner (1971), Neuwerth (1973, 

1974), Ho & Nosseir (1981), Umeda et al. (1987) all believe that the impingement 
tones are generated by a feedback loop. The energy of the feedback loop is provided 
by the instability waves in the mixing layer of the jet. The instability waves are 
generated by acoustic excitations in the region near the nozzle exit. These waves 
grow as they propagate downstream, see figure 1. Upon impingement on the wall 
acoustic waves are generated. According to Wagner and Neuwerth the feedback 
acoustic waves travelled upstream inside the jet column for subsonic impinging jets. 
On the other hand, Ho & Nosseir suggested that the feedback acoustic waves 
actually travelled upstream outside the jet. However, regardless of whether the 
feedback waves are inside or outside the jet column these waves, on reaching the 
nozzle exit, tend to excite the shear layer of the jet, leading to the generation of 
instability waves. I n  this way the feedback loop is closed. 

Let L be the distance between the wall and the nozzle exit and Ci and C, be the 
phase velocities of the downstream propagating instability waves and the feedback 
acoustic waves respectively as shown in figure 1. The impingement tone frequency, 
f , ,  is determined by the feedback condition that the time taken for the instability 
wave to propagate from the nozzle exit to  the wall plus the time taken for the 
feedback acoustic waves to propagate from the wall upstream inside or outside the 
jet to the nozzle exit must be equal to  an integral multiple of the period of oscillation. 
This condition leads to the following formula for f ,  (Neuwerth 1974) : 

n 
. n = 1 ,2 ,3 ,  

jn = L([l/C,]+[l/C,])’ 

In  deriving ( 1 )  it  has tacitly been assumed that a negligibly small amount of time is 
involved in the reflection and the excitation processes of the feedback loop a t  the wall 
and a t  the nozzle exit. In  this equation n is an arbitrary integer. The staging 
phenomenon alluded to before is the result of an abrupt change in the value of n as 
the nozzle to wall distance L increases. This gives rise to a discontinuous change in 
the impingement tone frequency versus L plot as shown in figure 15. 

In  the above feedback model, the downstream link of the loop, namely the 
instability waves, is well defined. The properties of these waves can be calculated 
with sufficient accuracy by the hydrodynamic instability wave theory (see for 
example, Michalke 1984; Tam & Burton 1984). The feedback acoustic waves 
meanwhile are somewhat unclear. In  the work of Wagner, an attempt was made to 
account for the reflection and refraction of these waves by the jet mixing layer which, 
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for convenience, was approximated by a plane vortex sheet. However, Wagner's 
model has not yielded results that agreed quantitatively with experiment. Nor has 
his model been able to predict the Strouhal number of the impingement tones. I n  the 
Ho & Nosseir model, the feedback waves were assumed to be acoustic waves with no 
particular spatial mode structure or properties. I n  this work i t  is our intention to 
express the belief that the Wagner model and the Ho & Nosseir model are either too 
simple or incorrect. We would like to suggest an alternative proposal that the 
feedback is achieved by waves belonging to the intrinsic upstream-propagating 
neutral acoustic modes of the jet flow. These upstream-propagating acoustic wave 
modes, just as the instability wave modes, have well-defined radial and azimuthal 
structures. Also they are, as in the case of Kelvin-Helmholtz instability waves, 
supported and determined by the mean flow of the jet. The characteristics of these 
waves will be calculated and discussed below. 

In  the present modified feedback model it is assumed that upon impinging on the 
wall (see figure 1) the instability waves excite the waves of the upstream-propagating 
neutral acoustic modes of the jet. These waves propagate toward the nozzle exit 
guided by the jet. Upon reaching the nozzle lip region they excite the instability 
waves of the jet and thus close the feedback loop. According to this new model, the 
frequency and characteristics of the feedback cycle are dictated by the intrinsic 
characteristics of the upstream-propagating neutral waves and those of the 
instability waves. It will be shown later that this is consistent with observations and 
that by calculating the properties of the upstream-propagating neutral waves, the 
properties of the impingement tones can be predicted. 

2.1. Vortex-sheet jet  model 
To determine the propagation characteristics of the upstream-propagating neutral 
acoustic wave modes of a jet we shall model the jet as a uniform stream bounded by 
a vortex sheet. Let us consider small-amplitude disturbances superimposed on such 
a vortex sheet jet of velocity Uj and radius Rj as shown in figure 5. Let p ,  and p -  
be the pressures associated with the disturbances outside and inside the jet and 
<(z,O,t) be the radial displacement of the vortex sheet, where ( r , x , B )  are the 
cylindrical coordinates. By starting from the linearized equation of motion of a 
compressible flow, i t  is straightforward (see e.g. Tam 1972; Chan & Westley 1973; 
Tam & Hu 1989) to  show that the governing equations and boundary conditions for 

At r = Rj, 

V2p,  = 0, r 2 R,, 1 
a', at2 

P,  = P-, (3) 

(6)  
At r+  co, 

p ,  satisfies the outgoing wave or boundedness condition, 

where a,, aj, pm and pj are the speed of sound and gas density outside and inside the 
jet. 
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FIGURE 5.  Small-amplitude disturbances superimposed on a vortex sheet jet. 

Now let us look for propagating wave solutions of the form 

(7) 

where n = 0, 1, f 2, . . . and k, the wavenumber and w(w > 0), the angular frequency 
are as yet unspecified parameters. Substitution of (7) into (2)-(6) and eliminating 6, 
i t  is easy to  find that I;, and I;- are given by the solution of the following eigenvalue 
problem : 

At r = R,, 
P+ = P-, 

1 d j i  1 dI;+ - 
p a w 2  dr ~ ~ ( w - U ~ k ) ~  dr ’ 

The solution of (8) and radiation or boundedness condition (6) is 

I;+ = AH:’(?+ T ) ,  (12) 

where q+ = ( w 2 / a - - k 2 ) i ;  0 < argr+ < n, the left (right)-hand equality sign is to be 
used if w is real and w > 0 (o < 0). H!)( ) is the nth-order Hankel function of the first 
kind. 

The solution of (9) which is bounded as r+O is 

2;- = Jn(T-r),  (13) 

where 7- = [ ( w -  Uj k)2/af-k2]i; 0 < argq- < n. By substituting (12) and (13) into 
(lo),  the unknown constant A can be easily found. This gives 

Upon imposing boundary condition (1 1) on (13) and (14), the condition of non-trivial 
solution leads to the following dispersion relation : 
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where C = w / ( k a , )  and Mj = Uj/aj are the dimensionless phase velocity of the wave 
and Mach number of the jet respectively. A prime indicates the derivative. 

The dispersion relation (15) has been used successfully by various investigators in 
the past, (e.g. Tam 1972; Chan & Westley 1973: Tam & Hu 1989), to calculate the 
properties of the Kelvin-Helmholtz instability waves of the jet flow. However, this 
dispersion relation as formulated is completely general and should describe all other 
possible intrinsic wave modes of the jet as well. Recently Tam & Hu (1989) carried 
out an in-depth investigation of the wave modes of high-speed compressible jets 
using dispersion relation (15). They found two additional families of wave solutions 
beside the familiar Kelvin-Helmholtz instability waves. For subsonic jets, although 
only a casual study was carried out, they noticed that the jet can support a family 
of neutral wave modes. These waves are neither unstable nor damped. That is, both 
k and w of these waves are real. These waves propagate upstream along the jet 
column and possess properties in many ways resembling those of acoustic modes 
inside a circular hard-wall duct. These neutral wave modes are formed by reflections 
of the pressure waves a t  the mixing layer of the jet. We believe that these waves are 
generated in high subsonic impinging jets by the impingement of the Kelvin- 
Helmholtz. instability waves on the wall. They were the upstream-propagating 
waves observed by Wagner (1971), Neuwerth (1974) and Umeda et al. (1987). These 
waves provide the dominant feedback from the wall to the nozzle lip region of the jet. 
In the next subsection the characteristics of these upstream-propagating neutral 
waves are analysed. 

2.2. Modal classijtcation and wavenumber-frequency relations 
The upstream-propagating waves that are of primary concern here are neutral 
waves. For neutral waves, both the wavenumber k and the angular frequency w are 
real. For the purpose of computing the dispersion curve, w = w ( k ) ,  it is advantageous 
to rewrite dispersion relation (15) and eigenfunction (13) and (14) each in a form 
involving only real functions. This can be done by using the standard relation 
between Hankel function H g )  with imaginary argument and modified Bessel function 
K n  : 

c z 1 6 - l  [J,-,(IE- 4) [Kn-l(lE+ 4) +Kn+1(16+ 4 1  + 

KnN+ 4) (a, C/aj -Mj)z l6+l Jn(l6- 4) 
-Jn+i(I6-4)1 = 0, w > 0, (16) 

where g+ = IC2 - 114, 6- = [ (a ,  C/a j  -Mj)z - 11; and a = kR,. The upstream-propa- 
gating neutral wave modes are given by the roots of (16) along the negative real axis 
of the complex C-plane lying between the branch points of r+ or 6, a t  C = - 1 and 
7- or 6- a t  G = (aj/a,) (Mj- 1). 

For given values of 01 and n, the dispersion relation (16) has many roots or 
eigenvalues. The eigenfunction corresponding to each eigenvalue is given by (17) and 
(18). The entire set of eigenvalues can be characterized by the azimuthal wavenumber 
n and a radial wavenumber m. For convenience, the wave mode which corresponds 
to the nth azimuthal mode and the mth radial mode will be designated by (n,m),  
where n = 0 , 1 , 2 ,  ... and m = 1,2 ,3 ,  ... . Figure 6 shows typical eigenfunction 
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FIGURE 6. Eigenfunction distribution of axisymmetric neutral wave modes for cold jets ; 
M, = 0.8. Strouhal number (St) = 2fR, /Uj .  
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FIGURE 7 .  Eigenfunction distribution of helical neutral wave modes for cold jets: Mj = 0.8. 
bl (PI IPI 

distributions for cold jets (the total temperature of the jets is equal to the ambient 
temperature) at M j  = 0.8 for the (0, l ) ,  (0,2) and (0,3) modes at different Strouhal 
number (St = f D / U j ,  where f is the frequency and D is the nozzle exit diameter). The 
radial index m characterizes the number of maxima of Ipl. For the n = 0 modes, (pl 
attains its maximum value at r = 0. Figure 7 shows typical eigenfunction 
distributions at M, = 0.8 for the (1 ,  l ) ,  (1,2) and (1,3) modes. For wave modes with 
n = 1 or higher, the eigenfunction is zero a t  the jet axis. It is to be noted that unless 
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FIQURE 8. Wavenumber-frequency relations of axisymmetric neutral waves for cold jets ; 
Mi = 0.8. The frequency range for which the Strouhal number (st = f D / U , )  of the waves is less than 
0.7 is hatched. Only waves in this region have frequency which can match that of the 
Kelvin-Helmholtz instability waves of the jet flow. 

the C-value of the wave is close to - 1, the pressure fluctuation of the wave is almost 
entirely confined to regions inside the jet flow. 

The wavenumber-frequency relationships of the axisymmetric modes (0, l),  (0,2), 
(0,3) and (0,4) for the Mj = 0.8 (cold) jets are shown in figure 8. These are typical 
dispersion relations a t  subsonic Mach numbers. As the dimensionless wavenumber 
a = kR, increases, the dispersion relation of each mode terminates along the straight 
line C = - 1. In figure 8 the cut-off points are indicated by small circles. Figure 9 
shows the corresponding dispersion relations for the helical modes (1, l), (1,2) and 
(1,3) at Mj = 0.8. These are typical of all the higher-order modes in the index n. 
Again the dispersion relations terminate on the line C = - 1 as indicated. 

For supersonic jets, similar neutral waves exist. Figures 10 and 11 are the 
wavenumber-frequency relations of these wave modes. They are typical for 
supersonic jets. Again all the dispersion relations terminate or have cut-off points 
along the line C = - 1. In  the work of Tam & Hu (1989) a detailed investigation of 
these neutral waves in supersonic jets was carried out in the complex-k and complex- 
w planes. They have shown that for a specified mode, the upstream-propagating 
neutral waves are given by the part of the dispersion curve lying to the right of the 
maximum point where the slope (or group velocity) is negative. These waves have a 
phase velocity nearly equal to the ambient speed of sound, i.e. C x - 1. To the left 
of the maximum point the waves are downstream propagating. Figures 12 and 13 
show the eigenfunction distributions of the first three axisymmetric and helical 
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FIGURE 10. Wavenumber-frequency relations of supersonic axisymmetric neutral waves for 
cold jets; Mj = 1.4. 
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FIGURE 1 1. Wavenumber-frequency relations of supersonic helical neutral waves 
for cold jets ; M, = 1.4. 
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FIGURE 12. Eigenfunction distribution of supersonic axisymmetric neutral wave modes 
for cold jets; Mi = 1.4. 
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modes at Mj = 1.4. The eigenfunction extends over a long distance outside the jet. 
This means that the main part of the upstream-propagation wave is outside the jet. 
In  a sense the wave is outside the jet but is guided by the jet on its way upstream. 
This appears reasonable and necessary since the jet flow is supersonic. 
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FIQURE 13. Eigenfunction distribution of supersonic helical neutral wave modes 
for cold jets ; M ,  = 1.4. 

2.3. Cut-off and minimum Strouhal numbers 

An examination of figures 8 and 9 and others at different subsonic Mach numbers 
indicates that the cut-off value of the Strouhal number (fD/Uj) as C-t- l+ is 
essentially also the minimum Strouhal number of a particular (n, m) wave mode. The 
cut-off Strouhal numbers can be calculated by finding the roots of the dispersion 
function (16) in the limit C+-l+.  For n =k 0 (all non-axisymmetric modes) as 
C + -  1+, (16) reduces to 

where g- = I((a,/aj)+Mj)'-l];. The roots of (19) can easily be found by Newton's 
iteration or similar methods. 

For n = 0 (16) reduces to 

because of the la1 In I<+ a( term, there are two types of solutions to (20). 
(a )  C-t-l+,  a =k 0 

In this case (20) reduces to  Jl(lg-ll) = 0. 

This leads to lg-al = C T ~  where J,(a,) = 0, i = 1,2,3,  ... . Since G + - 1 + ,  this gives 

-+-1a1-- W R  . c a,  - - g t  

uj Mj aj M,(u~/u,) [(a,/aj) + M , ) ~ -  11;' 

( b )  C+-l+  and lal+O 
In  this case a special solution of (20) is possible. The solution has the form 

la1 + o+, C+ - 1 +pe-p'la12 + . . . , 
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FIQURE 14. Cut-off (minimum) Strouhal number of the helical (n = 1) neutral waves as a 
function of jet Mach number for cold jets. 

where /3(p > 0) and ,u are unknown real constants. It is easy to show by substituting 
(23) into (20) that the equation is satisfied provided that 

From (23) it is straightforward to find 

as (24) 

Thus for the (0 , l )  mode, the limiting value of the Strouhal number is zero or the 
dispersion function passes through the origin of the (w ,  k)-plane. 

Figure 14 shows the cut-off (minimum) Strouhal number of the helical modes 
(1, l) ,  (1,2) and (1 ,3)  as a function of Mach number for cold jets. It is to be noted 
that for jet Mach number less than 0.7, the Strouhal numbers of these wave modes 
have values greater than unity. They decrease gradually as the jet Mach number 
increases into the supersonic region. 

3. The feedback loop of impingement tones and its characteristics 
In  our proposed impingement tone generation model, the feedback loop is made 

up of downstream-propagating instability waves and the feedback upstream- 
propagating neutral acoustic waves. The overall characteristics of the loop are, 
therefore, dictated by those of the instability waves (Kelvin-Helmholtz) and the 
feedback neutral acoustic modes. It is well known that the instability waves in the 
core region of a jet are restricted to a fairly narrow frequency band. Experimental 
measurements and theoretical calculations indicate that the Strouhal number range 
is limited to less than 0.6 to 0.7. Instability waves of higher Strouhal number tend 
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FIGURE 15. Data from Neuwerth (1974) showing ladder structure of impingement tone 
frequencies and average frequency, f,. Mj = 0.8, St,, = 0.568, D = 5 cm. 

to be damped out quickly and would be unable to  propagate far enough downstream 
of the nozzle exit to reach the wall to excite the feedback acoustic modes unless the 
wall is placed extremely close to the jet exit. Since the feedback loop is driven by the 
instability waves of the jet flow, the Strouhal number of stable impingement tones 
must, therefore, be restricted to the range of less than 0.6 to 0.7. 

Now if the feedback from the wall to the nozzle exit is accomplished by waves of 
the neutral acoustic modes discussed in the last section, i t  is clear that only those 
wave modes that exist in the range of Strouhal number less than 0.6 to  0.7 could 
participate. A careful examination of figures 8 , 9  and 14 reveals that for cold subsonic 
jets only one neutral wave mode, namely the axisymmetric ( 0 , l )  mode, lies in this 
restricted Strouhal number range. Thus, according to the present model the feedback 
phenomenon for subsonic impinging jets must possess axisymmetry. This theoretical 
deduction is consistent with all currently available experimental observations. For 
supersonic impinging jets, figure 14 indicates that  the helical mode (1,l) falls into the 
restricted Strouhal number range so that both axisymmetric and helical (or flapping) 
modes of resonant oscillations are possible. Both of these modes of resonance have 
been observed by Neuwerth (1974) and us (see figures 3 and 4). 

The impingement tone frequency of a high subsonic jet of a fixed Mach number 
varies as the distance between the nozzle exit and the wall, L,  gradually increases. 
A typical plot of frequency versus distance of separation is shown in figure 15. As can 
be seen the tone frequency as a function of LID exhibits a ladder-like structure in 
accordance with (1). The discontinuities in frequency (also in the first harmonic) 
occur when there is a sudden increase in the integers n by unity. Neuwerth (1973, 
1974), after a careful examination of his own data and those of Wagner (1971), 
recognized that the observed tone frequencies did not cover the full range of 
frequency given by (1). Instead he found that the range of Strouhal number of the 
tones was quite small. Because of this, it is meaningful to define an average Strouhal 
number (or average frequency, f,) of the impingement tone (see figure 15). This 
average impingement tone Strouhal number is independent of the nozzle to wall 
separation distance. It is a function of Mach number alone. Being independent of 
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FIQURE 16. Comparison of the Strouhal number of the least dispersive ( 0 , l )  mode neutral waves 
and the average Strouhal number of impingement tones : -, least dispersive wave aZw/ak2 = 0;  
0, Keuwerth (1972); 0,  Wagner (1971); A, Present study; 0, Ho & Pu'osseir (1981); +, Umeda 
et al. (1987). 

LID, its value cannot be calculated by (1)  which is based on the feedback loop phase 
integral condition. What mechanism determines this average Strouhal number ? 
Here, it is proposed that this Strouhal number is controlled by the property of the 
feedback neutral acoustic wave. As shown in figures 8 and 9, the feedback neutral 
acoustic waves are dispersive waves. That is, different parts of a group of these waves 
will tend to propagate with different velocities and hence disperse in space in the 
course of time. I n  a stable feedback loop, the waves must form a coherent system 
against perturbations and fluctuations. This, therefore, favours waves which are the 
least dispersive or most coherent. In  other words, the feedback loop is, in all 
likelihood, tuned to  a frequency range near that of the least dispersive neutral 
acoustic wave. Thus to calculate the average impingement tone Strouhal number of 
a subsonic jet, it is only necessary to find the Strouhal number of the least dispersive 
(0 , l )  mode neutral acoustic wave. The least dispersive wave is given by the condition 

Figure 16 shows the Strouhal number of the least dispersive ( 0 , l )  mode wave as a 
function of (subsonic) jet Mach number. Plotted on this figure also are the average 
impingement tone Strouhal number measured by Neuwerth (1974), Wagner (1971), 
Ho & Nosseir (1981), Umeda et al. (1987), and those of the present study. As can be 
seen, over the Mach number range of 0.7 to 0.95 the agreement between the 
calculated and measured values is excellent. The excellent agreement between the 
calculated and the measured average Strouhal number appears to provide strong 
support for our proposal that the acoustic feedback from the wall to the nozzle exit 
is indeed accomplished by the neutral (0 , l )  wave mode discussed in $ 2 .  

The vortex sheet jet model used in all the above calculations is, of course, only an 
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FIGURE 17. Effect of finite thickness mixing-layer on wavenumber-frequency relations of 
axisymmetric neutral waves for cold jets ; Mj = 0.8 : -, vortex sheet jet model ; ---, b/Rj = 0.5 ; 
-.-.- , bjR,  = 0.8; hatched region St = f D / U j  < 0.7. 

approximation. In a real jet the velocity profile is continuous and the mixing layer 
has a finite half-width. To assess the effect of finite mixing-layer thickness we have 
recomputed the dispersion relation using the same Gaussian velocity profile model as 
in the works of Tam & Burton (1984) and Tam & Hu (1989). The Gaussian velocity 
profile has been found to agree well with experimental measurements. The eigenvalue 
search procedure is identical to that described in Tam & Burton and, therefore, will 
not be repeated here. In  the present case the numerical integration is simpler and 
straightforward since the waves propagate upstream so that there is no critical point, 
Figure 17 shows the calculated dispersion curves for a Mach 0.8 jet with b/R,  = 0.0, 
0.5 and 0.8, where b is the half-width of the mixing layer and R, is the radius of the 
jet. As can be seen, for the (0 , l )  mode, which is the mode involved in the feedback 
loop, the dispersion relation is not much affected by the thickness of the jet mixing 
layer. For a nearly fully developed jet velocity profile with a mixing-layer half-width 
equal to half the jet radius (b/Rj = 0.5) the dispersion relation for the ( 0 , l )  neutral 
wave mode differs from that of a vortex sheet jet by no more than 5 % in the relevant 
frequency range. This and similar calculations a t  other Mach numbers suggest that 
the vortex sheet model is a good first approximation. 

The eigenfunction of the (0 , l )  neutral wave mode at the average Strouhal number 
for subsonic jets has been calculated using (17) and (18). A typical distribution of the 
eigenfunction Ipl is shown in figure 6(a) .  In all the cases calculated, the pressure 
fluctuations are, for all intents and purposes, confined to regions inside the jet flow. 
This is in agreement with the findings of Wagner (1971) and Neuwerth (1974) who 
proposed that the feedback loop is completed by periodic acoustic disturbances 
propagating upstream inside the jet flow. Ho & Nosseir (1981) and Umeda et al. 
(1987) on the other hand have suggested that the feedback is accomplished by 
acoustic waves propagating upstream outside the jet. We believe that this is not the 
dominant feedback path. Most probably what they measured were the sound waves 
generated by the impingement of large-scale instability waves on the wall. These 
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sound waves propagate in all directions away from the impingement region outside 
the jet. However, these sound waves are not part of the feedback loop as they are not 
the primary mechanism that causes the generation of instability waves by exciting 
the shear layer of the jet a t  the nozzle exit. The standing wave pattern observed by 
Wagner (197 1)  is formed by the superposition of the downstream-propagating 
instability wave and the upstream-propagating neutral wave. Such standing wave 
patterns were observed in the video records taken in the present study (but not 
presented here) as well. 

To investigate whether the main feedback path is inside or outside the jet, 
Lepicovsky & Ahuja (1985) performed a high subsonic (Mach number = 0.79) 
impinging jet experiment inside an open wind tunnel. The open wind tunnel provided 
a uniform external flow surrounding the jet. In  the experiment the wind tunnel Mach 
number could reach a value of 0.23. If the main feedback path is inside the jet the 
coaxial wind tunnel flow outside would affect the feedback loop minimally. But if the 
feedback path is outside the jet then when the wind tunnel is turned on the speed of 
the upstream-propagation sound wave will be reduced. This will, according to (l),  
decrease the frequency of the impingement tones. At a wind tunnel Mach number of 
0.23 a substantial frequency drop should be observed. Lepicovsky &, Ahuja, however, 
found little frequency shift over the entire range of wind tunnel operating Mach 
numbers. Their experiment thus offers additional evidence in support of the original 
proposal of Wagner (1971) and Neuwerth (1974). 

It is worthwhile to point out that  the calculated and predicted average 
impingement tone Strouhal number increases rapidly as the jet Mach number 
decreases (see figure 16). For jet Mach number less than 0.65 the predicted average 
Strouhal number exceeds the unstable Strouhal number range of the jet, namely 0.7 
or less. Thus for lower Mach number jets there will be a mismatch in the Strouhal 
number between the downstream-propagating instability waves and the least 
dispersive feedback upstream-propagating acoustic waves. Under this circumstance 
it is very unlikely that the feedback loop can be self-sustained. Hence stable 
impingement tones would not be emitted. That no stable tones would be emitted by 
a high Reynolds number subsonic impinging jet with Mach number less than, say, 0.6 
has been well documented since the pioneering experiments of Wagner (1971). The 
above, however, appears to provide the first concrete theoretical explanation of this 
low Mach number cut-off phenomenon. 

The present work is confined to high Reynolds number (Re > 2 x lo5) subsonic 
round impinging jets. It is well known that low Reynolds number jets and mixing 
layers are extremely sensitive to acoustic excitation. Because of their high receptivity 
to external excitation they can emit tones by other weaker feedback paths a t  Mach 
numbers well below 0.6 (see Karamcheti et al. 1969), when the present proposed 
feedback mechanism is not effective. In  addition to the Reynolds number effect it is 
also important to point out that  the geometry of the jet is also a factor that must be 
taken into consideration. The characteristics of the Kelvin-Helmholtz instability 
waves which drive the feedback loop and those of the upstream-propagating neutral 
acoustic waves are flow geometry dependent. One simple way to see this is to note 
that a circular jet can support helical wave motion as well as flapping motion but a 
two-dimensional jet or an elliptic jet can sustain only flapping but not helical motion. 
For non-circular high Reynolds number high subsonic impinging jets we believe that 
a similar feedback loop as discussed in this paper exists. However, the characteristics 
of the impingement tones would invariably be modified by the non-circular geometry 
of the jet. 
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Here we would like to make i t  clear that the proposed feedback cycle of this paper 
is not the only one possible. What we suggest is that  if we accept the ansatz that it 
is the dominant feedback mechanism for high Reynolds number impinging jets then 
it is possible to explain: (i) why only axisymmetric instability wave modes are 
observed for subsonic jets whereas both axisymmetric and helical (or flapping) modes 
are observed for supersonic jets, (ii) why there is a low Mach number cut-off of the 
impingement tone phenomenon around Mach number 0.6. In  addition, our feedback 
model offers, for the first time, a way to predict the average impingement tone 
frequencies. The calculated results are found to agree well with experimental 
measurements. We have by no means proven that the ansatz is correct. However, we 
believe that the good agreement between calculated results and measurements does 
provide strong support for its validity. 

4. Summary 
It is proposed that the feedback cycle of the impingement tones is accomplished 

by the intrinsic neutral acoustic waves of the jet flow. The characteristics of these 
neutral waves have been carefully examined. It is found that for subsonic jets only 
the (0 , l )  mode of the neutral acoustic waves has Strouhal numbers which match 
those of the Kelvin-Helmholtz instability wave of the jet flow. Because of this, only 
axisymmetric feedback resonance is possible for high Reynolds number subsonic 
impinging jets. I n  contrast to this, for supersonic jets both the axisymmetric (0 , l )  
and helical ( 1 , l )  modes satisfy the frequency matching condition and thus are 
possible modes of resonance. The theoretical result is consistent with experimental 
observations. 

The Strouhal number range of the impingement tones of a subsonic jet a t  a fixed 
Mach number is quite small. This allows one to  define, in a meaningful way, an 
average Strouhal number of the tones. It is proposed that this average Strouhal 
number must be equal to that of the least dispersive ( 0 , l )  mode neutral wave. 
Excellent agreement between the calculated Strouhal number of the least dispersive 
wave and the average Strouhal number measured by Neuwerth (1974) and Wagner 
(1971), Ho & Nosseir (1981) and Umeda et al. (1987) and those of the present study 
is found. The eigenfunctions, lpl, of the neutral feedback waves at the average 
Strouhal numbers are found to be effectively confined to the inside of the jet column. 
This finding is in agreement with the feedback concept of Wagner who proposed that 
the feedback acoustic disturbances travelled upstream inside the jet flow. 

Present numerical results indicate that for subsonic (cold) jets with Mach number 
less than 0.65 the Strouhal numbers of the least dispersive ( 0 , l )  mode upstream- 
propagating neutral acoustic waves are larger than 0.7. They are, therefore, outside 
the Strouhal number range of the Kelvin-Helmholtz instability waves of the jet. 
This mismatch in Strouhal number suggests that no stable feedback loop could be 
maintained and hence no stable impingement tone would be emitted by high 
Reynolds number subsonic jets. This theoretical finding appears to provide a much 
sought after explanation of the rather puzzling low Mach number cut-off phenomenon 
reported by most impingement tone experiments since the early work of Wagner 
(1971). 

The present study is limited in objectives. Issues involving broadband impinging 
noise as well as the directivity of impingement tones, etc., are beyond the scope of 
the present investigation. 
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